skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sethi, Suresh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. A New Approach to Contract Design with Private Inventory Information In a typical decentralized supply chain, a downstream retailer privately observes its inventory level and has an informational advantage over the upstream supplier. In “A Stationary Infinite-Horizon Supply Contract Under Asymmetric Inventory Information” by Bensoussan, Sethi, and Wang, the authors study how to optimally design a stationary, truth-telling, long-term contract in such a setting. In contrast to the classic first order approach in literature, they formulate the contract design as an optimization over a functional space and develop a solution approach based on the calculus of variations. They further apply their necessary optimality condition to the class of batch-order contracts, which replenish a prespecified inventory quantity for a fixed payment in each period only when the retailer has zero inventory on hand. 
    more » « less
  3. Bottom-towed fishing gears produce significant amounts of seafood globally but can result in seafloor habitat damage. Spatial closures provide an important option for mitigating benthic impacts, but their performance as a fisheries management policy depends on numerous factors, including how fish respond to habitat quality changes. Spatial fisheries management has largely focused on marine protected areas with static locations, overlooking dynamic spatial closures that change through time. To investigate the performance of dynamic closures, we develop a spatial fishery model with fishing-induced habitat damage, where habitat quality can affect both fish productivity and movement. We find that dynamic spatial closures often achieve greater harvest and habitat protection than fixed marine protected areas or conventional nonspatial maximum sustainable yield management, especially under strong habitat–stock interactions. Determining optimal dynamic spatial closures may require considerable information, but we find that simple policies of fixed-schedule rotating closures also perform well. Dynamic spatial closures have received less attention as fisheries management tools, and our results demonstrate their potential value for addressing both harvest and habitat impacts from fishing. 
    more » « less
  4. Abstract The introduction of hippos into the wild in Colombia has been marked by their rapid population growth and widespread dispersal on the landscape, high financial costs of management, and conflicting social perspectives on their management and fate. Here we use population projection models to investigate the effectiveness and cost of management options under consideration for controlling introduced hippos. We estimate there are 91 hippos in the middle Magdalena River basin, Colombia, and the hippo population is growing at an estimated rate of 9.6% per year. At this rate, there will be 230 hippos by 2032 and over 1,000 by 2050. Applying the population control methods currently under consideration will cost at least 1–2 million USD to sufficiently decrease hippo population growth to achieve long-term removal, and depending on the management strategy selected, there may still be hippos on the landscape for 50–100 years. Delaying management actions for a single decade will increase minimum costs by a factor of 2.5, and some methods may become infeasible. Our approach illustrates the trade-offs inherent between cost and effort in managing introduced species, as well as the importance of acting quickly, especially when dealing with species with rapid population growth rates and potential for significant ecological and social impacts. 
    more » « less
  5. Computational advances reveal opportunities for more sustainable hydropower development in large transboundary river basins. 
    more » « less